Как выбрать регулятор скорости для гоночного квадрокоптера

В этой статье мы расскажем, что такое регуляторы скорости (ESC), покажем по каким критериям нужно их выбирать. Будет подробное описание всего что касается регуляторов для гоночных дронов, это должно помочь новичкам влиться в наше сообщество.

ESC значит Electronic Speed Controller — регулятор хода или скорости. Как видно из названия — они нужны для регулировки скорости вращения моторов (например, в гоночных дронах). ESC получает сигнал (уровень газа) от полетного контроллера и управляют бесколлекторным мотором, меняя его скорость вращения за счет управления мощностью. Качественные регуляторы позволят избежать множества проблем и дадут полностью насладиться полетом.

Я собрал характеристики всех регуляторов в одной таблице, так что их легко и просто сравнить между собой.

Содержание

Максимальный ток — Амперы

Первая вещь, на которую нужно обратить внимание при выборе регулятора — это максимальный ток, он измеряется в амперах. Моторы потребляют энергию при вращении, если им нужен ток больше, чем может выдать регулятор, то регулятор начнет греться и в итоге откажет. Это катастрофа, и она может даже привести к полному сгоранию регулятора, в прямом смысле этого слова! Есть три вещи, которые влияют на потребляемый ток и могут перегрузить регуляторы:

  • Увеличение KV моторов
  • Увеличение размера мотора (диаметр и высота статора)
  • Более тяжелые пропеллеры (диаметр или шаг).

Есть два значения максимального тока: максимальный продолжительный ток и пиковый ток. Максимальный продолжительный ток (Continuous current) — это ток через мотор, который может выдавать регулятор скорости продолжительное время без вреда для себя. Даже в гонках вы не будете использовать максимальный газ продолжительное время, а регуляторы обычно способны выдерживать гораздо больший ток в течение короткого времени (порядка 10 секунд), это и есть пиковый макс. ток (burst current rating).

Некоторые новички ошибочно считают это значение током, который выдает регулятор на моторы: на самом деле всё наоборот. Это моторы определяют потребляемый ток, поэтому рейтинг регуляторов должен быть такой же, как у моторов (или выше). Но использовать очень мощные и большие регуляторы нет никакого смысла, например, если вы замените 20А регулятор 40-амперным, то коптер будет хуже летать из-за увеличившегося веса.

Выясняем потребляемый ток

При помощи стенда для измерения тяги и ваттметра можно самостоятельно выяснить потребляемый ток. Ну или просто поискать результаты тестов для вашей винтомоторной группы в онлайне. Некоторые производители моторов указывают такие вещи в описании.

Например, если вы используете FPVModel 2206 (англ.) с винтом 5030 и аккумулятором 4S Lipo, то он будет потреблять 10 А при 100% газе, в этом случае регулятора на 12 А будет достаточно. Но, если вы планируете использовать винты 6045 с этим же мотором, максимальный ток может достигать 20 А, в этом случае безопаснее использовать регулятор на 20А.

Не страшно если вы выберите регулятор с небольшим запасом, но не нужно сходить с ума из-за этого. Вы можете использовать регулятор на 30 А или даже на 40 А, там, где требуется всего 20. Такая конфигурация будет работать, но это перебор, и вы просто увеличите вес и стоимость коптера (более мощные регуляторы дороже и весят больше).

Тяга и потребляемый ток в тестах

Имейте в виду, тесты тяги в статике, которые можно найти в онлайне, обычно показывают бОльшие значения, чем в реальных полетах (ток и тяга).

Во-первых, полетный контроллер всегда оставляет небольшой запас для стабилизации коптера, поэтому вы никогда не получите тягу 100% в реальном полете. Во-вторых, в полете моторам легче, т.к. они уже двигаются в воздухе, поэтому потребляемый ток ниже.

Чтобы проверить эту теорию я настроил OSD (экранное меню), которое показывает общий потребляемый ток во время полета. В моем случае это были моторы DYS Storm 2207 2500KV и пропеллеры DAL Cyclones 5045×3. В тестах тяги эти моторы потребляли 30А при 100% газе. Однако во время полета максимальный ток был около 22-25 ампер.

К тому же стили полета у всех разные, возможно вы не часто летаете на 100% тяге, в этом случае максимальный ток может быть ниже.

Плохие аккумуляторы

Ещё одна вещь, о которой стоит задуматься — какой ток может выдать ваш аккумулятор. Большинству 5″ коптеров хватит регуляторов на 20 А, т.к. четырехбаночные аккумуляторы емкостью 1300 — 1500 мА*ч просто не выдают бОльшую мощность продолжительное время, т.е. их не хватит чтобы спалить 20А регуляторы (при условии что они действительно рассчитаны на 20 ампер, и это не маркетинговый ход).

Регулей на 25 — 30 ампер достаточно в большинстве случаев. Даже если у вас высококачественный аккумулятор ёмкостью 1300 — 1600 мА*ч, то регулятор на 35 А всё равно перебор, хотя хуже не сделает и ничего не спалит.

Я выяснил, что большинство аккумуляторов 4S емкостью около 1500 мА*ч дают ток не больше 80 ампер.

Например, у вас винтомоторная группа, которая может потреблять до 120 ампер. Да, она будет потреблять такой ток, но обычно не более пары секунд. Из-за того, что аккумулятор не сможет выдать такой ток, его напряжение очень сильно просядет и ток станет значительно меньше.

Использование регуляторов значительно более мощных, чем необходимо

При использовании регуляторов с большим запасом по току вы получаете дополнительный вес, увеличенный размер и, возможно, большую цену. Достоинство такого подхода — меньше шанс их перегреть, а эффективность работы регулей немного выше.

На платах стоят «ключи» (силовые транзисторы или FET), которые и выполняют всю работу по управлению током. Если у вас более крупные и жирные ключи, рассчитанные на большой ток, то они будут греться меньше, чем мелкие ключи. Следовательно они могут быть немного более энергоэффективными, при этом оба варианта будут работать.

Прошивка

SimonK и BLHeli

Две самые старые прошивки для регуляторов мультикоптеров — SimonK и BLHeli. Давным-давно регуляторы поставлялись с примитивными прошивками, написанными производителями, так что моделистам приходилось ставить сторонние прошивки, например SimonK или BLHeli. Потихоньку эти прошивки стали стандартными для большинства регуляторов, и в настоящее время почти все регуляторы идут с уже предустановленными BLHeli или SimonK.

Большинство пользователей выбирает BLHeli, потому что эта прошивка имеет очень простой интерфейс и богатый функционал. Более подробно про преимущества BLHeli и SimonK читайте тут (англ). В любом случае я считаю, что SimonK уже устарела, т.к. не обновляется, рекомендую использовать BLHeli.

BLHeli_S

Это второе поколение прошивки BLHeli, специально разработанное для регуляторов с аппаратным ШИМ (PWM). Имеет более простой интерфейс. Подходит для некоторых регуляторов типа: Aikon SEFM 30A, DYS XS и т.д.

BLHeli_32

Прошивка BLHeli_32 — это третье и самое свежее поколение BLHeli. Прошивка разработана специально для 32-битных микроконтроллеров, исходный код закрыт. Более мощные процессоры дают более плавное, точное и надежное управление моторами.

Процессор

Большинство современных регуляторов используют микроконтроллеры фирм Atmel, Silabs или ARM Cortex. Разные микроконтроллеры имеют различную производительность и работают под управлением разных прошивок.

  • на Atmel (8 бит) можно использовать как SimonK так и BLHeli
  • на SiLabs (8 бит) можно использовать только BLHeli или BLHeli_S
  • Atmel ARM Cortex 32-bit, STM32 (конкретнее: STM32 F0) — BLHeli_32

Восьмибитные регуляторы на ATMEL раньше были очень популярны, потом, благодаря больше производительности, доминировать начали микроконтроллеры от Silabs. В 2016 году появились регуляторы на 32-битных микроконтроллерах.

SILABS F330 и F39X

Регуляторы, основанные на чипах SiLabs можно разделить на группы по сериям микроконтроллеров, 2 основные это F330 и F39X (F390 и F396).

F330 — имеет низкую тактовую частоту, и с ним могут возникнуть проблемы при использовании моторов с большим KV. У F39X нет таких проблем, они также поддерживают протокол Multishot (он в 10 раз быстрее, чем Oneshot125) и Oneshot42. Два наиболее известных регулятора: Littlebee 20A (F330) и DYS XM20A (F39X).

DYS XM20A – F390

Busybee (EFM8BB)

Микроконтроллеры Busybee  — это обновление F330 and F39X. Если у вас прошивка BLHeli_S, то скорее всего в регуле стоит чип Busybee:

  • BusyBee1 – BB1 (EFM8BB10F8)
  • BusyBee2 – BB2 (EFM8BB21F16)

Эти модели используют аппаратный ШИМ (PWM) вместо программной эмуляции, в результате мы получаем более плавную реакцию на изменение газа и есть поддержка протокола D-Shot. Это дешевые, но хорошие регуляторы.

Пример: Aikon SEFM 30A и DYS XS30A.

Aikon SEFM 20A – BusyBee

Производительность 8-битных микроконтроллеров

Если кратко, то в порядке от лучших к худшим:

  • BB2
  • BB1
  • F39X
  • F330
  • Atmel-8-bit

8 бит и 32 бита

32-битные микроконтроллеры имеют больше вычислительных мощностей, с ними появляются возможности, недоступны 8-битным. Например, «ESC Telemetry», датчики тока, программируемые RGB светодиоды и т.д.

Однако до сих пор в продаже есть куча 8-битных регуляторов т.к. у них имеется весь минимально необходимый функционал типа DShot, RPM filter и т.д. по очень доступной цене. Для множества пилотов этого достаточно.

Протоколы

Протоколы, используемые в регуляторах скорости определяют скорость передачи сигнала от полетного контроллера к самому регулятору, а это может оказать заметное влияние на поведение коптера. Оригинальный (самый старый) протокол — PWM или ШИМ, имеет задержку до 2 мс, а один из самых быстрых — Multishot — 5-25 мкс.

Протокол Oneshot

Вот список протоколов, используемых в регуляторах коптеров (от старых к новым):

Подробнее читайте в отдельной статье про протоколы. Не каждый регулятор поддерживает все протоколы, перед покупкой убедитесь, что необходимый протокол поддерживается.

Активное торможение и аппаратный ШИМ (Active Braking и Hardware PWM)

Есть несколько фишек регуляторов о которых вы обязательно должны знать:

  • Активное торможение или Damped Light или Active Braking — улучшает отзывчивость
  • Аппаратный ШИМ (Hardware PWM) — улучшает отзывчивость и плавность, делает ваш квадрик заметно тише и немного более энергоэффективным. Дает немного более точное управление
  • Отдельный драйвер затворов полевых транзисторов — дешевые регуляторы используют обычные транзисторы для управления мощными силовыми транзисторами, использование специальных аппаратных драйверов улучшает активное торможение

Размер и вес

Как правило размер и вес регуляторов пропорционален максимально допустимому току.

Регуляторы, разработанные для мини-квадриков имеют достаточно стандартные размеры и вес около 4-6 грамм. Всё сложнее и сложнее сделать регули ещё меньше и легче без ухудшения характеристик. Для гонок обычно стараются сделать коптер как можно более легким, но если вы хотите облегчить коптер, то лучше обратить внимание на что-то ещё, а не на регуляторы.

Мелкие регули быстрее нагреваются, и бывает довольно сложно их охладить, поэтому ставя очень мелкие регуляторы старайтесь подумать об охлаждении.

Напряжение питания

Некоторые регуляторы могут работать даже от 6-баночных аккумуляторов, другие — максимум 4S. Перед покупкой убедитесь, что они совместимы по напряжению. Если подать на регуль слишком большое напряжение, то он просто сгорит, возможно вместе с моторами.

Регуляторы с BEC и без него (Opto ESC)

Некоторые регуляторы включает в себя стабилизатор (BEC), который дает на выходе 5В (это напряжение можно использовать для питания полётного контроллера, приёмника и других компонентов). Есть регуляторы у которых BEC отсутствует, их маркетологи и производители часто называют «Opto», хотя очень часто никакой опторазвязки в них нет.

Оптопара — это оптический элемент, который передает сигнал при помощи света. Он отделяет высоковольтную часть схемы от низковольтной и предотвращает повреждение электроники высоким напряжением, снижает интерференцию сигналов.

Opto регуляторы имеют преимущество: меньший вес, размер и шум (т.к. схема управления мотором изолирована от управляющих схем: от приемника и полетного контроллера).

Однако без BEC на 5 вольт приходится использовать отдельный стабилизатор для питания приёмника и полётного контроллера (заметьте, у таких регуляторов всего 2 контакта на серворазъеме, а не три: есть земля и сигнал, но нет питания — красного провода).

brushed-esc

Регулятор с BEC

arduino-nano-flash-esc-configure-one-wire-blheli-linker-programmer-sn20a

Без BEC

Вопрос всех новичков: подключение регулятора к мотору

Я всё ещё помню, как сам начинал заниматься квадрокоптерами, начал я с подключения мотора к регулятору и думал: как же соединить 3 провода? До сих пор я очень часто получаю этот вопрос от новичков.

Не беспокойтесь о порядке подключения проводов, просто подсоедините все три провода от регулятора к проводам мотора, в любом порядке, как вам удобнее. Если мотор будет вращаться не в ту сторону, просто поменяйте два любых провода. Кроме того, направление вращения можно изменить в настройках через BLHeliSuite (если вы используете прошивку BLHeli). В случае регуляторов KISS, нужно просто закоротить два контакта, специально предназначенных для этой цели.

BLHeli ESC Configurator

Как известно, BLHeliSuite работает только под Windows, но для пользователей других операционных систем есть хорошая новость. Существует расширение для Chrome под названием BLHeli Configurator, его можно использовать для прошивки и настройки регуляторов. Расширение работает под любой ОС, где есть Хром.

Подходит для BLHeli and BLHeli_S, не подходит для BLHeli_32.

Регуляторы, встроенные в моторы

Да. есть и такие устройства, например, ZTW Black Widow. С одной стороны, это удобно и экономится место, но на самом деле довольно спорное решение.

При ремонте или апгрейде приходится менять сразу пару устройств (регуль+мотор), что в долгосрочной перспективе заметно дороже.

Регуляторы «4-в-1»

Еще один удобный вариант — регулятор 4 в 1, по сути, это 4 отдельных регулятора скорости расположенных на одной плате, размером как полетный контроллер или PDB (плата распределения питания). Такие регуляторы и полётник можно собрать в стек, что упрощает разводку проводов. Однако повреждение 1 регулятора ведет к замене целой платы. Компромисс между риском и удобством.

В качестве компромисса некоторые производители выпускают отдельные регуляторы, которые можно соединить между собой и получить плату 4-в-1, например Quadrant 4-in-1. Ещё одно преимущество плат 4-в-1 — более правильно распределение веса в коптере, основная масса компонентов оказывается в собранной в одном месте, что дает меньший момент инерции коптера. Благодаря этому увеличивается его отзывчивость.

FVT-littllebee-pro-20a-x-4-4-in-1-ESC-BLHeli-top

Регуляторы 4-в-1 обычно ставятся прямо под полетным контроллером, поэтому есть смысл подумать о помехах, которые могут повлиять на летные характеристики и качество видео. Попробуйте их экранировать (англ).

Как подключить

ESC питаются от аккумулятора, а скорость вращения мотора управляется сигналом, обычно идущим от полетного контроллера.

Анатомия

Типичный регулятор скорости состоит вот из этих компонентов:

  • Микроконтроллер
  • Драйверы ключей
  • Силовые транзисторы (ключи, MOSFET)
  • LDO (стабилизатор питания микроконтроллера)
  • Куча конденсаторов (фильтры)
  • Опционально: датчик тока
  • Опционально: светодиоды

Регуляторы 4-в-1 — это, как правило, 4 одинаковые схемы на одной плате.

LDO (стабилизатор напряжения)

Этот стабилизатор снижает напряжение аккумулятора, служит для питания микроконтроллера и других компонентов регулятора (это не BEC, прим. перев).

Микроконтроллер

Это мозг регулятора, работает под управлением прошивки, например BLHeli.

Драйверы ключей (gate drivers)

Нужны для управления мощными ключевыми транзисторами, и оказывают заметное влияние на характеристики. Подключаются к затвору (gate) мосфетов, поэтому по английский и называются gate drivers.

В старых и дешевых регуляторах вместо драйверов использовались простые транзисторы. Поэтому их характеристики и возможности по торможению были хуже.

Вместо того, чтобы использовать три отдельных драйвера для трех фаз мотора, в современных регуляторах с BLHeli_32 используется чип FD6288. Это сразу три драйвера в одном чипе.

Силовые транзисторы (MOSFET)

Или ключи, они как выключатели, только включаются и выключаются тысячи раз в секунду, собственно, это и есть управление мотором.

Бренды

Производители популярных и качественных регуляторов скорости для гоночных дронов (по алфавиту):

  • Aikon
  • Armattan
  • Castle
  • DYS
  • EMAX
  • Favourite
  • FPVModel
  • Gemfan
  • KISS
  • Lumenier
  • Racerstar
  • Rotorgeek
  • Sunrise
  • TBS
  • T-Motor
  • Turnigy

Извиняюсь, если пропустил кого-то, дополните список в комментариях.

Регуляторы и тяга

При использовании некоторых регуляторов возрастает тяга моторов (при той же конфигурации: мотор, пропеллер, аккумулятор). Разница может достигать 20%. Однако это не значит, что регулятор качественный, есть и другие критерии: качество сборки, долговечность, диапазон напряжений питания, плавность управления, уровень создаваемых помех и т.д. Ещё влияет стиль полета.

Лично я не заморачиваюсь с этим, т.к. большинство современных регуляторов от известных брендов работают более-менее одинаково.

Автоматический тайминг или ручной?

Есть два подхода к таймингу управления двигателями: автоматический (auto timing) и ручной (fixed timing), первый используется в регуляторах KISS, второй — в BLHeli. Оба подхода влияют на характеристики и надежность работы, подробнее объясняется тут (англ).

Загрузчик

Раньше, когда было много разных прошивок, загрузчик был важен при прошивке. Загрузчик — это очень маленькая программа, которую нужно прошить в регулятор; она дает доступ к этому регулятору и позволяет менять/обновлять/настраивать прошивку.

В настоящее время, не стоит даже задумываться об этом, т.к. все новые регуляторы идут с прошивкой BLHeli и с загрузчиком BLHeli. Если вам любопытно, то вот ещё немного информации о загрузчиках:

Без загрузчика можно обновлять прошивку и менять настройки регуляторы только напрямую подключившись к чипу-микроконтроллеру (англ.) или подпаявшись к специальным контактным площадкам на плате (если они, конечно, есть). При прошивке этим способом, можно заодно прошить и загрузчик.

У прошивок SimonK и BLHeli имеются свои загрузчики. Загрузчик от BLHeli имеет более широкий функционал, делая прошивку и настройку заметно проще. Раньше мы могли прошивать только через сигнальный провод, используя интерфейс 1-wire (англ). Сейчас есть более удобный, «сквозной» (passthrouh) метод, при этом полетный контроллер выступает в роли программатора.

Какие регуляторы я рекомендую?

Смотрите статью «топ-5 лучших регуляторов скорости«.

История изменений

  • Июль 2016 — первая версия статьи
  • Август 2017 — добавлена информация про BLHeli_32 и 32-битные процессоры, спасибо Тому за правки
  • Октябрь 2019 — добавлена анатомия регуляторов и схемы подключения
  • Январь 2020 — обновление информации

Как выбрать регулятор скорости для гоночного квадрокоптера: 4 комментария

    1. Новиков Александр Автор записи

      Что конкретно интересует? Как устроены мосфеты? 🙂

  1. Новичок

    Ваша статья очень хорошая!
    Но хотелось бы больше инфы по … каждый новичок рано или поздно задается вопросом программирования, как это сделать? виды устройств? как подключить к компу? есть ли сразу готовые к установке?
    Заранее спасибо!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.